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FM TEL;EME'I%Y AND FREE-FLIGHT TECHNIQUES FOR AERODYNAMIC 

MEASUREMENTS I N  CONVENTIONAL WIND TUNNELS 

By Ronald J. Hruby, John B.  McDevitt, Grant W .  Coon, 
Dean R .  Harrison,and Joseph H .  Kemp, Jr. 

Ames Research Center 

A frequency-modulated telemetry system has been developed and successfully 
used t o  measure surface pressures on f ree- f l igh t  models i n  conventional wind 
tunnels.  
device which launches t h e  t e s t  model upstream i n t o  t h e  t e s t i n g  a rea  at a veloc- 
i t y  which terminates the  upstream motion j u s t  i n  f ron t  of the  viewing windows. 
This technique eliminates model-support interference e f f e c t s  and i s  especial ly  
usefu l  i n  s tudies  involving flow over afterbodies . 

The f r ee - f l i gh t  motion i s  achieved by the  use of a simple pneumatic 

The development and i n i t i a l  use of t h i s  system has been m a d e  using t h e  
Ames 14-inch helium tunnel .  
of base pressures on cones i s  presented here .  It w a s  found t h a t  the  response 
t i m e  of the  system w a s  l e s s  than 1 millisecond. 

A t yp ica l  appl icat ion involving the  measurement 

INTRODUCTION 

Aerodynamic da ta  obtained in conventional wind tunnels are  subject t o  
possible interference e f f e c t s  from the  model-support system. Estimates of 
support-interference e f f e c t s  become uncertain at hypersonic speeds, especial ly  
i n  s tudies  of base flows o r  f l o w s  over afterbodies on shapes such as the  
Apollo capsule. 
technique i n  conventional wind tunnels t o  obtain force and moment data  f r e e  of 
support-interference e f f e c t s .  A na tura l  extension of t h i s  technique would be 
the  incorporation of a telemetry system so t h a t  surface pressures, convective 
heating, e t c . ,  could a l so  be measured i n  the  absence of support-interference 
e f f e c t s .  The development of such a telemetry system w a s  successfully completed 
i n  Apri l  1964 at the  Ames Research Center and descr ipt ions of t h i s  system and 
the  associated free-f  l i gh t  technique are  presented herein.  

Dayman at JPL ( r e f .  1) has successfully u t i l i z e d  a f r ee - f l i gh t  

The f ree- f l igh t  motion of t he  t e s t  model i s  achieved by the  use of a 
simple pneumatic launching device placed i n  the  tunnel  downstream of the  tes t  
sect ion.  The launch device propels the  t e s t  model upstream with suf f ic ien t  
veloci ty  t h a t  i t s  upstream motion terminates near t he  upstream edge of t h e  
tes t - sec t ion  viewing windows. High-speed motion p ic tures  of t he  model provide 
an extensive photographic record which i s  evaluated i n  the  same manner as i n  
ba l l i s t ic - range  t e s t i n g .  An important advantage of th is  technique, compared 
t o  the  usual  ba l l i s t ic - range  method, i s  t h a t  t h e  accelerat ion forces  on the  
models are r e l a t ive ly  s m a l l .  This, of course, g rea t ly  enhances the  possibi l -  
i t y  of designing accurate and r e l i ab le  telemetering devices.  



In  t h i s  paper a descr ipt ion of the FM telemetry system i s  presented first,  
followed by a discussion of t he  f ree- f l igh t  technique. Base-pressure measure- 
ments f o r  a 15' half-angle cone i n  f r ee  f l i g h t  at  hypersonic speeds are then 
presented t o  i l l u s t r a t e  the  p r a c t i c a l  appl icat ion of these methods i n  aerody- 
namic t e s t i n g .  These and other research appl icat ions of the  telemetry system 
are  discussed i n  reference 2 .  

FM TEI;EMETRY SYSTEM 

The r e l a t i v e l y  s m a l l  accelerations encountered during launch and f r ee -  
f l i g h t  motion of t he  t e s t  model permit use of state-of-the-art  c i r c u i t r y  and 
components i n  the  telemetry system. Nevertheless, considerable care must be 
exercised i n  the  choice of e l e c t r i c a l  components t o  insure s t a b i l i t y  of the  
system, and the  use of a wide FM bandwidth i s  necessary t o  eliminate systematic 
e r ro r s  as much as possible .  

An attempt has been made i n  the  past  (see r e f .  3) t o  measure stagnation 
pressures by radiotelemetry from a model magnetically supported i n  a wind 
tunnel .  It w a s  found t h a t  large temperature in te rac t ions  with the telemetry 
center frequency could a r i s e  and methods f o r  reducing the  temperature e f f e c t s  
were suggested. I n  the  present telemetry system possible temperature in t e r -  
act ion e f f e c t s  were e f fec t ive ly  eliminated by use of a temperature compensat- 
ing c i r c u i t  i n  t he  telemeter and by mounting the  telemeter i n  p l a s t i c  t e s t  
models so as t o  thermally insulate  the  electronic  components from the  sur- 
rounding hypersonic flow f i e l d  during wind-tunnel t e s t i n g .  

The basic components of the  telemetry system are  shown i n  f igure  1. The 
1 . 5 - m i l l i w a t t  VHF telemeter i s  implanted i n  the  aerodynamic t e s t  vehicle, as 
shown i n  f igure  2.  It cons is t s  of a miniature t rans is tor ized  osc i l l a to r  with 
a capacitance-type pressure transducer incorporated i n  the  c i r c u i t  so t h a t  t he  
osc i l l a t ion  frequency i s  controlled by the  d i f f e r e n t i a l  pressure within the  
transducer. 
mounted d i r e c t l y  on the  tes t - sec t ion  viewing window. The antenna i s  coupled 
through a VHF preamp t o  an FM receiver .  The demodulated s ignal  dr ives  a 
recording oscil lograph and, if desired,  an analog-to-digital  converter and 
d i g i t a l  da ta  recorder.  
follows . 

The receiving system u t i l i z e s  a VHF antenna (receiving c o i l )  

A descr ipt ion of t he  various components of the system 

Telemeter 

The telemeter i s  a VHF common-emitter o s c i l l a t o r  (see discussion i n  ref.4, 
frequency modulated by means of a variable-capacitance pressure c e l l .  The 
o s c i l l a t o r  c i r c u i t  and pressure transducer were designed f o r  use with an FM 
receiver having a tuning range of 105-140 Mc and a m a x i m u m  i . f .  bandwidth of 
kO.8 Mc. 

Details of the  o s c i l l a t o r  c i r c u i t  and i t s  mechanical layout are  shown i n  
The complete telemetry un i t  i s  mounted on a 7/8-inch-diameter f igure  3.  
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printed-circui t  w a f e r .  
element located on the  outside perimeter of both the  f ron t  and back faces  of 
t he  pr inted-circui t  w a f e r .  
secondary c o i l  located inside the  o s c i l l a t o r  c o i l  and provides a four-to-one 
reduction i n  s igna l .  
FSP-293-1, 2N709, or equivalent)  provides a gain bandwidth product of 4xlO8 cps 
i n  t h i s  appl icat ion.  
more s tab le  operation when the  operating frequency i s  near the  180° phase s h i f t  
frequency of t he  t r a n s i s t o r  (see discussion i n  r e f .  4). A transformer feedback 
c i r c u i t  w a s  u t i l i z e d  because capacitor c1 cor rec ts  t h e  feedback phase s h i f t  
a r i s ing  from the  t r a n s i s t o r  VHF a charac te r i s t ics .  Temperature s t a b i l i t y  i s  
provided by the  thermistor T .  Capacitor C2 provides a low impedance path 
across the  b a t t e r i e s  t o  eliminate any r eac t iv i ty  they might introduce in to  the  
c i r c u i t .  Resistor R ad jus t s  t he  quiescent operating point of the  c i r c u i t .  
The best  operation w a s  obtained with a quies$ent co l lec tor  current 2cdC of 
about 0.5 mA. A somewhat grea te r  value of 2cdC w a s  used t o  minimize possible 
var ia t ions  i n  c i r c u i t  performance due t o  t r a n s i s t o r  charac te r i s t ics .  

The two-turn o s c i l l a t o r  c o i l  i s  a pr inted-circui t  

The feedback element consis ts  of a pr inted-circui t  

The t r a n s i s t o r  used in the  osc i l l a to r  c i r c u i t  (Fairchi ld  

A common-emitter c i r c u i t  i s  used because it provides a 

The nominal value of t h e  transducer capacitance (no d i f f e r e n t i a l  pressure) 
i s  7 ppF. 
ing frequency of ll7 Me. However, manufacturing tolerances of t he  printed- 
c i r c u i t  wafer and of the  pressure transducer cause the  nominal center frequency 
t o  f a l l  i n  the  range 117 k 12 Me. The capacitance-versus-pressure slope of 
each transducer, combined with the  available bandwidth of t he  FM receiver,  
determines the usable pressure range of each transducer. 
sure d i f f e r e n t i a l  which would give the  maximum allowable frequency modulation 
i s  a very s m a l l  p a r t  of t he  l i nea r  mechanical range of the  pressure c e l l .  I n  
the  present case the  range of t he  transducer capacitance i s  20.096 ppP 
the  avai lable  bandwidth of +O .8 Mc . 

With the  c o i l  and c i r c u i t  of f igure  3, t h i s  gives a nominal operat- 

Generally, the  pres- 

f o r  

Antenna and VHF Preamplifier 

The o s c i l l a t o r  c o i l  axis i s  oriented p a r a l l e l  t o  t he  center l i n e  of the  
wind tunnel.  
TEo1 mode below cutoff ( r e f .  5 ) .  
provide m a x i m u m  coupling t o  the  tunnel-wall-equivalent -surf ace current .  Energy 
coupled t o  the  receiving c o i l  develops a voltage across the  50 R cable-matching 
r e s i s t o r  and dr ives  a preamplifier with high input impedance. The preamplifier 
output i s  matched t o  a 50 R coaxial  cable which i n  t u r n  dr ives  the  high imped- 
ance RF input of t he  F M  receiver .  

The f i e l d  pa t te rn  within the  tunnel  corresponds t o  a cy l indr ica l  
The antenna (receiving c o i l )  i s  oriented t o  

The VHF preamplifier w a s  used t o  allow f l e x i b i l i t y  i n  the  RF s igna l  han- 
dl ing.  If two receiving c o i l s  aze 
used (e .g . ,  one on each of t he  tes t - sec t ion  windows), the  preamplifier pro- 
vides re jec t ion  of common-mode extraneous s ignals .  This d i f f e r e n t i a l  connec- 
t i o n  of receiving c o i l s  and preamplifier provided a 6 dB t o  15 dB improvement 
i n  signal-to-noise r a t i o .  Inductance provides t h e  common-mode re jec t ion  
at VHF frequencies. Transistor &3 adjus ts  t h e  sum of co l lec tor  currents  of 
t r ans i s to r s  &I and Q2 t o  be 20 mA; hence, the  output voltage has a source 
impedance given by r e s i s t o r  

A c i r c u i t  diagram i s  shown i n  f igure  4. 

b, o r  50 a .  The coupling capacitors were Corning 
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Glass VHF un i t s .  
t he  d i f f e r e n t i a l  mode i s  dependent upon carefu l  shielding between the  d i f f e ren t  
stages which i s  provided by t h e  use of separate input and output compartments. 
These compartments are shown i n  figure 5(a) 
constant current stage a re  shown i n  f igure  5(b) .  Two e s s e n t i a l  fea tures  of 
the  preamplifier ( r e f .  6 )  are i t s  high input impedance ( t o  prevent loading of 
t he  receiving c o i l  c i r c u i t )  and i t s  constant 50 R output impedance ( t o  prevent 
s igna l  d i s to r t ion  due t o  output cable impedance). 

The abi l i ty  of t h i s  amplifier t o  operate s a t i s f a c t o r i l y  i n  

The ba t t e ry  compartment and 

FM Receiver and D a t a  Recorder 

The FM receiver  used i n  t h i s  system w a s  a standard commercial telemetry 
receiver with a tuning range of 105-140 Mc and an i . f .  bandwidth of 1.6 Mc. 
The dynamic range of the  receiver i s  2 microvolts t o  20,000 microvolts. 

A c l a s s i c a l  FM system would have u t i l i z e d  a bandwidth which w a s  minimum 
f o r  t he  m a x i m u m  information rate. For example, a s igna l  having an information 
content of 1 kc would be transmitted t o  a receiver  having an FM bandwidth of 0 
t o  about 5 kc or 10 kc. However, t he  present telemetry system w a s  developed 
f o r  a s ingle  enclosed channel where possible e r ro r s  ( r e f .  7) i n  s igna l  might 
a r i s e  from o s c i l l a t o r  detuning, d r i f t ,  frequency changes due t o  launch-flight 
s t resses ,  and the  proximity of large metal l ic  surfaces.  These types of e r ro r s  
were minimized by using a wide-band FM signal. 
ac tua l ly  used, it w a s  observed t h a t  the  cumulative frequency e r ro r s  at t h e  
receiver output were not grea te r  than 2 kc during any spec i f ic  t es t .  

For t h e  deviation ratios 

The direct-coupled output of t he  receiver  detector  dr ives  a recording 
oscillograph preamplifier (see f i g .  1) which provides both the  proper input 
impedance ( f o r  galvanometer damping) and voltage range f o r  a recording osc i l lo -  
graph. 
t a l  da ta  recorder and maintain proper voltage and source impedance t o  the  
oscil lograph. 
the  pressure transducer with i t s  i n l e t  tube w a s  found t o  be capable of a f r e -  
quency response dynamic range grea te r  than 1 kc, f o r  p r a c t i c a l  reasons, a 
galvanometer with a f l a t  response t o  1 kc w a s  used. The data were simulta- 
neously recorded on a d i g i t a l  data recorder, which records the  da ta  i n  binary 
coded decimal form on magnetic tape,  and the  oscil lograph. The time required 
by the  d i g i t a l  da ta  recorder t o  record one da ta  point w a s  about 0.4 m i l l i -  
second which w a s  adequate t o  provide data  at frequencies t o  1 kc/sec. The 
recorded base-pressure data were synchronized with the  photographs of +,he 
model by means of a timing pulse which w a s  recorded simultaneously on the  
photographs, t he  magnetic tape,  and the  oscil lograph. 

A resistor-matching network w a s  used t o  prevent overload of t he  d ig i -  

This pa r t  of t he  system i s  a l so  shown i n  f igure  1. Although 

FREE -FLIGHT TESTING TECHNIQUE 

The first attempt t o  obtain free-f l i g h t  da t a  i n  conventional tunnels 
involved suspension of the  t e s t  models on wires which were broken a t  the  
appropriate time t o  release the  model in to  a f r ee - f l i gh t  t r a j ec to ry  through 
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t he  t e s t  section. An air gun on the  tunnel  center l i ne  t o  propel t he  t e s t  
models upstream in to  the  viewing area  has been successfully used, as previously 
mentioned, by Dayman (ref.  1). The l a t t e r  method, when it can be used, has the  
advantage of giving at least twice the  amount of da t a  of the  w i r e  supported 
system since the  model can be viewed in both upstream and downstream t raverses  
of t he  viewing area.  The pneumatic launching technique w a s  used i n  the  devel- 
opment of the  present telemetry system and a br ie f  descr ipt ion follows. 

Figures 6 and 7 are  schematic drawings of t he  Ames 14-inch helium tunnel 
and pneumatic model launcher. The launch device cons is t s  of a pis ton and rod 
on which the  model i s  mounted ( f i g .  7). 
"f i r ing" of the  t e s t  model i s  accomplished by release of the  res t ra in ing  pin.  
The upstream side of the pis ton i s  vented t o  the  tunnel s t a t i c  pressure (much 
l e s s  than 
so t h a t  t he  launch veloci ty ,  V1, of the  model r e s u l t s  i n  an upstream t r a j ec to ry  
which terminates near t he  upstream edge of the  viewing window (see f i g .  8 ) .  

The pis ton i s  contained i n  a tube and 

PI) while the  drivAng pressure, pl, i s  set at a predetermined value 

The 
f igure  8 
from the  

launch ve loc i ty  
and the  t i m e  i n  
re la t ionships  

( f t / s e c )  t o  give t h e  t r a j ec to ry  indicated i n  
seconds to t r a v e l  t he  distance rl (ft) 5s calculated 

where 

D aerodynamic drag of model, lb  

mm m a s s  of t e s t  model, slugs 

The time, t ,  i s  considered f i r s t  and the  m a x i m u m  value i s  used-which i s  the  
t i m e  f o r  a f r ee - f a l l i ng  object t o  t r a v e l  t h e  v e r t i c a l  height 
This defines the  proper raqio between model mass and aerodynamic drag. The 
required launch veloci ty  V1 

h l  (see f i g .  8) .  

can then be calculated from equation (1). 
- 

The i n i t i a l  f r ee - f l i gh t  veloci ty ,  V1, i s  r e l a t ive ly  - s m a l l  (usual ly  l e s s  
than 100 f'ps) and t h e  required reservoir  pressure p1 t o  achieve t h i s  veloci ty  
can readi ly  be estimated by assuming t h a t  the  driving gas remains i n  equi l ib-  
r i u m  and t h a t  the  expansion i s  isentropic .  It i s  a l so  convenient t o  assume 
p2 = 0 (see f i g .  7)  since the  upstream side of t he  launch tube i s  vented t o  
tunnel s t a t i c  pressure. The i n i t i a l  ve loc i ty  at launch i s  then re la ted  t o  t h e  
drivir,g pressure 

- 

by the  approximate re la t ionship  

5 



and by use of equation (1) a convenient expression f o r  estimating the  reservoir  
pressure i s  obtained 

where (see f i g s .  7 and 8) 
- 
2 1  length of reservoir ,  f t  

Z 2  piston stroke, f t  
- 

- 
p1 reservoir  pressure,  l b / f t2  

p.P cross-sectional a rea  of pis ton,  f t 2  

mp mass of pis ton ensemble, slugs 

Df f r i c t i o n  drag of piston, l b  

and the  energy function i s  given by 

1 I 1 I 

where 7 i s  the  spec i f ic  heat r a t i o .  The increase i n  energy available-by 
increasing the  length of the  reservoir ,  21, f o r  a given pis ton stroke, Z2, i s  
indicated i n  f igure  9 .  
large value of 2 1 .  
a stroke of 

- 
It i s  evident t h a t  l i t t l e  i s  t o  be gained by using a 

In the  present application a Eiston diameter of 1 inch, 
2 2  = 6 in . ,  and reservoir  length of 2 1  = 12 i n .  were used. 

TEST RESULTS 

The f irst  appl icat ion of the present telemetry system involved the  meas- 
urement of base pressures on cones and afterbody pressures on the  current 
Apollo configuration. 
here as an i l l u s t r a t i v e  example of the  present telemetry technique. 

The t e s t  r e s u l t s  f o r  a 15' half-angle cone a re  presented 

Mode 1 De t a i  Is 

A schematic drawing of the  t e s t  model (15' half-angle cone) and support 
system on which the  model r e s t s  u n t i l  launched i s  presented i n  f igure  10. The 
model and model holder were constructed e n t i r e l y  of nonmetallic mater ia l  
( p l a s t i c )  so t h a t  the  telemeter center frequency would not be s ign i f icant ly  
affected by e i t h e r  t he  model or the  holder.  The p l a s t i c  model construction 
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a l so  served t o  thermally insulate  t he  telemeter e lectronic  components from the  
surrounding hypersonic flow f i e l d  during wind-tunnel t e s t i n g  and thus minimize 
temperature in te rac t ion  e f f e c t s .  

Since a d i f fe ren t ia l - type  pressure transducer w a s  used, provision had t o  
be made f o r  applying a known pressure l eve l  t o  the  "reference" side of the  
pressure c e l l .  The inside cavi ty  of the  model, where t h e  telemeter and pres- 
sure transducer are  located, serves as the  reference-pressure chamber. A 
hypodermic needle (see f i g  . lo), inser ted through a s m a l l  rubber d isk  at the  
model base, i s  used t o  provide known changes i n  the  reference pressure during 
ca l ibra t ion  of the  system and t o  monitor the  reference pressure immediately 
p r io r  t o  launching of t he  model. The needle is pulled out of t he  model during 
the  i n i t i a l  portion of t he  launch. 

Extensive t e s t s  were made i n  order t o  determine the  accuracy and response 
time of the  system. 
grea te r  than 0 .O3 inch and appl icat ion of reference pressures greater  than 
2000 microns (greater  than about 0.04 p s i )  the  reference pressure w a s  subject 
t o  e r ro r s  l e s s  than +5O microns. For a s tep  pressure impulse applied at the  
base-pressure o r i f i c e  the  time required f o r  t he  telemetry s igna l  t o  exceed 
90 percent of the  new steady-state value w a s  approximately 0.6 millisecond. 

By use of hypodermic needles having inside diameters 

For t h i s  par t icu lar  t e s t  model, the  d i f f e r e n t i a l  pressure c e l l  w a s  
designed so  t h a t  a O.l>-psi  d i f f e r e n t i a l  loading resul ted i n  a 0.6 Mc s h i f t  
i n  center frequency of the  telemeter.  The ca l ibra t ion  of t he  telemetry system 
i s  shown i n  f igure  11, and it can be seen t h a t  the  system i s  l inear  f o r  load- 
ings up t o  about 0.05 p s i .  The ba t te ry  l i f e  of t he  telemeter o s c i l l a t o r  w a s  
about 20 hours, which w a s  more than adequate f o r  repeated pref l igh t  cal ibra-  
t i ons  and tes ts  of the  model. 

Base -Pressure Measurements 

The t e s t  of the  cone model with base-pressure telemetry w a s  made f o r  a 
free-stream Mach number of 10.7 and free-stream s t a t i c  pressure of 0.046 p s i .  
For t h i s  tunnel  the f l o w  can be brought t o  the desired t e s t  conditions i n  
about 3 seconds. A timing device i s  then used t o  i n i t i a t e  the  t e s t  equipment, 
i n  the  proper sequence. The high-speed camera tha t  records the motion of the  
t e s t  model i n  the  viewing area  i s  s t a r t ed  f i r s t ,  then the  da t a  recording 
equipment, and, f i n a l l y ,  launching of the  model i s  i n i t i a t e d .  Reference time 
marks a re  used t o  synchronize the  motion pictures  with the  telemetry data  
recorder i n  order t h a t  proper in te rpre ta t ion  of the  data  can be made. 

The poss ib i l i t y  of changes i n  model temperature affecting the  telemeter 
A thermocouple w a s  placed i n  the  reference frequency w a s  carefu l ly  checked. 

pressure cavi ty  of t he  model near t h e  telemeter package. The model w a s  s t ing  
mounted (not launched) and the  temperature monitored f o r  a tunnel  run of 20 
seconds. In  t h i s  time in te rva l ,  which i s  considerably longer than t h a t  
required f o r  a t y p i c a l  f r ee - f l i gh t  t e s t ,  t he  temperature at the  telemeter did 
not change. 
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During launch, and during the  f r ee - f l i gh t  t r a j ec to ry  i n  the  tunnel  hyper- 
sonic f l o w ,  t he  tes t  model is  subject t o  appreciable, but not excessive, accel-  
e ra t ion  forces .  The t e s t  model, with the  base-pressure o r i f i c e  closed, w a s  
launched in to  s t i l l  air i n  order t o  assess  possible g e f f e c t s .  The recorded 
telemetry da t a  during launch indicated t h a t  t he  accelecation force did not 
noticeably change t h e  telemetry center frequency. 

The high-speed da ta  recording of t he  base-pressure telemetry reading i n  
f r e e  f l i g h t  is  reproduced i n  f igure  12. With the  model near the  launcher, 
point A of f igure  12, t h e  base-pressure reading i s  qui te  high due t o  in t e r f e r -  
ence e f f e c t s  between t h e  model wake and the  model-holder portion of t he  
launcher. 
seconds, the  telemetry s igna l  i s  constant and the  pressure value i s  0.010 p s i .  
A t  point C,  t he  model has f a l l e n  in to  the  boundary layer near t he  tunnel  w a l l s  
and the  near proximity of t he  telemeter o s c i l l a t o r  t o  the  tunnel  w a l l s  r e s u l t s  
i n  an abrupt s h i f t  i n  telemetry frequency. Shortly the rea f t e r  the  s igna l  i s  
l o s t .  

From points  B t o  C,  f o r  which t h e  time i n t e r v a l  i s  about 80 m i l l i -  

The r a t i o  of model base pressure t o  free-stream s t a t i c  pressure i s  pre- 
sented i n  f igure  13 f o r  t h i s  f r ee - f l i gh t  t e s t  and f o r  p r io r  tests of the  same 
model mounted on various s izes  of support s t i ngs .  It i s  c l ea r ly  evident t h a t  
s t ing  interference e f f e c t s  pe r s i s t  even f o r  very s m a l l  s t ing  s i zes .  
example, when the cross-sect ional  area of t he  s t i ng  i s  only 4 percent of the  
model base area ( D s / h  = 0.2), the  base pressure i s  about 35 percent higher 
than t h a t  measured i n  f r e e  f l i g h t .  

For 

CONCLUDING REMIw(S 

The present FM telemetry system i s  current ly  being used at the  Ames 
Research Center t o  measure base pressures i n  f r e e  f l i g h t  on conical t e s t  models 
and afterbody pressures on entry vehicles such as the  Apollo configuration. 
The response time of the  pressure sensing system has been found t o  be l e s s  than 
1 millisecond i n  most appl icat ions.  Experience t o  date with t h i s  system has 
indicated t h a t  the  uncer ta in t ies  in  t h e  pressure measurements are  l e s s  than 
2 percent f o r  pressure readings greater  than about 0 . 1  p s i  and less than 100 
microns (0.002 p s i )  f o r  pressure readings l e s s  than 0 . 1 p s i .  The pneumatic 
model launching method used provided r e l a t i v e l y  repeatable f r ee - f l i gh t  t r a j e c -  
t o r i e s  i n  which the  tes t  model w a s  f r e e  of support interference e f f e c t s  f o r  
time in te rva ls  approaching 100 milliseconds. 

The successful development of the  present telemetry system w a s  due pa r t ly  
t o  the  carefu l  choice of components so as t o  insure s t a b i l i t y  i n  both the  
telemeter and the  receiving equipment, and t o  the  use of a wide bandwidth FM 
system. I n  addition, possible temperature in te rac t ion  e f f e c t s  were e f fec t ive ly  
eliminated by use of a temperature compensating c i r c u i t  i n  t he  telemeter and by 
mounting the  telemeter i n  p l a s t i c  t e s t  models so as t o  thermally insulate  the  
electronic  components from the  surrounding hypersonic flow f i e l d  during wind- 
tunnel  t e s t i n g .  
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Modifications t o  the  present system have permitted use of t he  f r ee - f l i gh t  
telemetry technique i n  shock tunnels as wel l  as f o r  measuring convective heat-  
ing on models i n  free f l i g h t .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffet t  Field,  C a l i f  ., Dec. 2, 1965 
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(a )  Input and output compartments. 

Figure 5. -  Photographs of VHF preamplifier. 
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A-32045.1 
(b  ) Battery and constant -current stage compartment. 

Figure 3.  - Concluded. 

16 



lnterchongeoble first throats 
provide nominol Moch numbers 
of I O ,  17 ond 21 

Common nozzle Test section Diffuser 

I 

Pneumatic louncher 

Y 
High-pressure 

settling chomber 

spheres 
- - - 

Control 
volve 
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